
1

User Orientation on XC 40 system
21st , Feb, 2018 IITM, Pune

RAVITEJA K
Applications Analyst, Cray

E Mail : raviteja@cray.com

2

Vision

● Cray systems are designed to be High Productivity as well
as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:
● the highest levels of application performance

● a rich variety of commonly used tools and libraries

● a consistent interface to multiple compilers and libraries

● an increased automation of routine tasks

● Cray continues to develop and refine the PE
● Frequent communication and feedback to/from users

● Strong collaborations with third-party developers

3

1. Compiler Optimizations

2. Cray Scientific Libraries

3. Performance Tuning and Scaling

4. Cray Tools

4

Compiler Optimizations

5

Vectorization (1):

● Hardware Perspective:
● Specialized instructions, registers, or functional units to allow in-

core parallelism for operations on arrays (vectors) of data.

● Compiler Perspective:
● Determine how and when it is possible to express computations

in terms of vector instructions

● User Perspective:
● Determine how to write code in a manner that allows the compiler

to deduce that vectorization is possible

Source : http://www.cac.cornell.edu

6

Vectorization (2):

● Goal:
● Parallelize computations over vector arrays

● Two major approaches:

● Pipelining :
● Several different tasks executing simultaneously

● SIMD (Single Instruction Multiple Data) :
● Many instances of a single task executing

simultaneously

7

Vectorization(3):

● Vector Units :
● Performs parallel floating/integer point operations on dedicate SIMD

units

● Intel Vector units:

● Pentium : : 32 bit

● MMX :

● SSE :

● AVX :

● AVX2 :

8

Vectorization (4):

● Vector Registers :
Floating Pointer

Single Precision : 32 bit

Double Precision : 64 bit

● SSE :

● AVX :

● AVX2 :

9

Vectorization (5):

Think vectorization in terms of loop unrolling
● Unroll N interactions of loop, where N elements of data array fit

into vector register

for (i=0; i<N; i++)
A[i] = B[i] + C[i];

for (i=0; i<N; i+=4) { // A,B and C are DP; in case of AVX
A[i] = B[i] + C[i];
A[i+1] = B[i+1] + C[i+1];
A[i+2] = B[i+2] + C[i+2];
A[i+3] = B[i+3] + C[i+3];

}

10

Vectorization (6):
Loop dependency?

for (i=1; i<N; i++) A [0, 1, 2, 3, 4]
A[i] = A[i -1] + B[i]; B [5, 6, 7, 8, 9]

Sequential operation looks like:

A[1] = A[0] + B [1] : 0 + 6 = 6

A[2] = A[1] + B [2] : 6 + 7 = 13

A[3] = A[2] + B [3] : 13 + 8 = 21

A[4] = A[3] + B [4] : 21+ 9 = 30

Updated A [0, 6, 13, 21, 30]

11

Vectorization (7):
Loop dependency?

A [0, 1, 2, 3, 4] and B [5, 6, 7, 8, 9]

for (i=1; i<N; i++)
A[i] = A[i -1] + B[i];

Vector operation looks like:

A[i] = A [i – 1] + B [i]

A [1, 2, 3, 4] = A [0, 1, 2, 3] + B [6, 7, 8, 9]

= A [0, 6, 8, 10, 12]

A [0, 6, 13, 21, 30] = A [0, 6, 8, 10, 12]

12

Vectorization (8):
● -hvectorN (cc/CC) : where N=0…3, specify the level of

automatic vectorizing to be performed. Vectorization results in
significant performance improvements with a small increase in
object code size. Vectorization directives are unaffected by this
option

● 0: No automatic vectorization
● 1: Specifies conservative vectorization. Loop nests are restructured. No

vectorizations that might create false exceptions are performed.
Results may differ slightly from results obtained when N=0 is specified
because of vector reductions

● 2: (Default) Specifies moderate vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured

● 3: Specifies aggressive vectorization. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may be
performed

13

Inlining:
● Inlining is the process of replacing a call with the

subprogram or function itself
Eg :

int call1 (int x, int y)
{
return x + y;

}

int call2 (int x, int y)
{
return call1(x, -y);

}

Replaced as
int call2 (int x, int y)
{
return x-y;

}

14

Using Compiler Feedback

● Compilers can generate annotated listing of your source
code indicating important optimizations. Useful for
targeted use of compiler flags.

● CCE
● ftn -rm
● {cc,CC} -hlist=a

● Intel
● ftn/cc -opt-report 3 -vec-report6
● If you want this into a file: add -opt-report-file=filename
● See ifort --help reports

● GNU
● -ftree-vectorizer-verbose=9

15

Compiler feedback: Loopmark

● For example, with the Cray compiler

%%% L o o p m a r k L e g e n d %%%
Primary Loop Type Modifiers
------- ---- ---- ---------
A - Pattern matched a - vector atomic memory operation

b – blocked
C - Collapsed f – fused
D - Deleted i – interchanged
E - Cloned m - streamed but not partitioned
I - Inlined p - conditional, partial and/or computed
M - Multithreaded r – unrolled
P - Parallel/Tasked s – shortloop
V - Vectorized t - array syntax temp used

w - unwound

16

Compiler feedback: Loopmark (cont.)

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr * - a(0) * u(i1,i2,i3)
40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

17

Compiler Feedback: Loopmark (cont.)
ftn-6289 ftn: VECTOR File = resid.f, Line = 29
A loop starting at line 29 was not vectorized because a recurrence was found

on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30
A loop starting at line 30 was not vectorized because a recurrence was found

on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31
A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31
A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37
A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37
A loop starting at line 37 was vectorized.

18

What did that loopmark note mean? Use “explain”
for more information

% explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a
recurrence was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear
recurrence. The following loop would cause this message to be issued:

DO I = 2,100
B(I) = A(I-1)
A(I) = B(I)

ENDDO

“explain” utility works for any Cray PE messages, e.g., ftn-*, cc-*, ld-*

19

Some Cray, Intel, and GNU compiler flags

Feature Cray Intel GNU

Listing -ra (“report all”) or

-rmo (“loop Mark” and “Opts

used”)

-list -vec-report3 -opt-

report -opt-report-

file=name

-fdump-tree-all

Diagnostic (produced by -ra) -help diagnostic -Wall (and other opts)

Free format -f free -free -ffree-form

Preprocessing -eZ -P –fpp (Fortran) -cpp

Suggested

Optimization

-O2

(default)

-O3 –xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive

Optimization

-O3,fp3 -ffast-math -funroll-loops -

ftree-vectorize –xAVX

-Ofast -mavx

-funroll-loops

Variables size -s real64

-s integer64

-real-size 64

-integer-size 64

-fdefault-real-8

-fdefault-integer-8

Byte swap -h byteswapio -convert big_endian -fconvert=swap

Enab. OpenMP (default) -openmp -fopenmp

20

Recommended compiler optimization levels

● Cray compiler

● The default optimization level (i.e. no flags) is equivalent to –O3 of most other
compilers. CCE optimizes rather aggressively by default, but this is also most
thoroughly tested configuration

● Try with –O3 –hfp3 (also tested this thoroughly)
● -hfp3 gives you a lot more floating point optimization, esp. 32-bit

● In case of precision errors, try a lower –hfp<number> (-hfp1 first, only -hfp0 if
absolutely necessary)

● GNU compiler

● Almost all HPC applications compile correctly with using -O3, so do that instead of the
cautious default.

● -ffast-math may give some extra performance

● Intel compiler

● The default optimization level (equal to -O2) is safe.

● Try with –O3. If that works still, you may try with -Ofast -fp-model fast=2
● Use –craype-verbose flag to {cc,CC,ftn} to show options

21

Inlining & inter-procedural optimization

● Cray compiler

● Inlining within a file is enabled by default.

● Command line options –OipaN (ftn) and –hipaN (cc/CC) where N=0..4, provides a set of
choices for inlining behavior

● 0 disables inlining, 3 is the default, 4 is even more elaborate

● The –Oipafrom= (ftn) or –hipafrom= (cc/CC) option instructs the compiler to look for
inlining candidates from other source files, or a directory of source files.

● The -hwp combined with -h pl=… enables whole program automatic inlining.

● GNU compiler

● Quite elaborate inlining enabled by –O3

● Intel compiler

● Inlining within a file is enabled by default

● Multi-file inlining enabled by the flag -ipo

22

Loop transformations

● Cray compiler
● Most useful techniques in their aggressive state already by default

● One may try to improve loop restructuration for better vectorization
with –h vector3

● GNU compiler
● Loop blocking (aka tiling) with-floop-block
● Loop unrolling -funroll-loops or -funroll-all-loops

● Intel compiler
● Loop unrolling with -funroll-loops or -unroll-aggressive

23

Directives for the Cray Compiler

● If you see from the compiler feedback that a loop has not
been blocked, unrolled, or vectorized but you are
convinced that it should be, you can use compiler
directives instead of rising the optimization level –O…

● Cray compiler supports a full and growing set of directives
and pragmas, e.g.
● !dir$ concurrent
● !dir$ ivdep
● !dir$ interchange
● !dir$ unroll
● !dir$ loop_info [max_trips] [cache_na]
● !dir$ blockable

● More information given in
● man directives
● man loop_info

!dir$ blockable(j,k)
!dir$ blockingsize(16)

do k = 6, nz-5
do j = 6, ny-5

do i = 6, nx-5
! stencil
end do

end do
end do

24

Why are CCE’s results sometimes different to other
compilers?

● Cray expect applications to be conformant to
language requirements
● This include not over-indexing arrays, no overlap between

Fortran subroutine arguments, and so on
● Applications that violate these rules may lead to incorrect

results or segmentation faults
● Note that languages do not require left-to-right evaluation of

arithmetic operations, unless fully parenthesized
● This can often lead to numeric differences between different

compilers
● Some applications expect left-to-right evaluation
● Use -hadd_paren to add automatically parenthesis to select

associative operations (+,–,*). Default is -hnoadd_paren

● We are also fairly aggressive at floating point
optimizations that violate IEEE requirements
● Use -hfp[0-4] flag to control that

25

About reproducibility
● CCE compilers guarantee that repeated runs with same number of

ranks and threads will give identical results. This is not the case for
all other compilers. However:

● Results can vary with the number of ranks or threads
● Use -hflex_mp=option to control the aggressiveness of optimizations which

may affect floating point and complex repeatability when application
requirements require identical results when varying the number of ranks or
threads.

● option in order from least aggressive to most is:
● intolerant: has the highest probability of repeatable results, but also has the highest

performance penalty

● strict: uses some safe optimizations, with high probability of repeatable results.

● conservative: uses more aggressive optimization and yields higher performance than
intolerant, but results may not be sufficiently repeatable for some applications

● default: uses more aggressive optimization and yields higher performance than
conservative, but results may not be sufficiently repeatable for some applications

● tolerant: uses most aggressive optimization and yields highest performance, but
results may not be sufficiently repeatable for some applications

F
A

S
T

E
R

26

Recommended for bit reproducibility

● Start from this set

-hflex_mp=conservative –hfp1 –hadd_paren

● Please note:
● We only strive to maintain bit reproducibility for

applications that are designed correctly to be bit

reproducible. The compiler cannot make a non

bitrep code reproducible.

27

Summary

● Four compiler environments available on the XC:
● Cray (PrgEnv-cray is the default)
● Intel (PrgEnv-intel)
● GNU (PrgEnv-gnu)
● PGI (PrgEnv-pgi)

● All of them accessed through the wrappers ftn, cc and CC – just do module
swap to change a compiler or a version.

● There is no universally fastest compiler
● Performance strongly depends on the application (even input)
● We try however to excel with the Cray Compiler Environment
● If you see a case where some other compiler yields better performance, let

us know!

● Compiler flags do matter
● be ready to spend some effort for finding the best ones for your application.
● More information is given at the end of this presentation.

28

Cray Scientific Libraries

Overview

29

Cray Scientific Libraries

FFT

FFTW

Dense
BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CASE – Cray Adaptive Simplified Eigensolver

●Large variety of standard libraries available via modules
● Optimized for Cray Hardware and also for Haswell processor.

30

What makes Cray libraries special

1. Node performance
● Highly tuned routines at the low-level (ex. BLAS)

2. Network performance
● Optimized for network performance
● Overlap between communication and computation
● Use the best available low-level mechanism
● Use adaptive parallel algorithms

3. Highly adaptive software
● Use auto-tuning and adaptation to give the user the known best

(or very good) codes at runtime

4. Productivity features
● Simple interfaces into complex software

31

Library Usage Overview
● LibSci

● Includes BLAS, CBLAS, BLACS, LAPACK, ScaLAPACK
● Module is loaded by default (man libsci)
● Threading used within LibSci (OMP_NUM_THREADS). If you call within a parallel region,

single thread used. More info later on.

● FFTW
● module load fftw and man fftw

● PETSc
● module load cray-petsc{-complex} and man intro_petsc

● Trilinos
● module load cray-trilinos and man intro_trilinos

● Third Party Scientific Libraries
● module load cray-tpsl (use online documentation)

● Iterative Refiniment Toolkit (IRT) through LibSci.
● man intro_irt

● Cray Adaptive Sparse Kernels (CASK) are used in cray-petsc and cray-trilinos
(transparent to the developer).

32

Third party Scientific Libraries (cray-tpsl)

● TPSL (Third Party Scientific Libraries) contains a collection of
outside mathematical libraries that can be used with PETSc
and Trilinos.

● This module will increase the flexibility of PETSc and Trilinos by
providing users with multiple options for solving problems in
dense and sparse linear algebra.

● The cray-tpsl module is automatically loaded when PETSc or
Trilinos is loaded. The libraries included are MUMPs, SuperLU,
SuperLU_dist, ParMetis, Hypre, Sundials, and Scotch.

33

Check you got the right library!

● Add options to the linker to make sure you have the
correct library loaded.

● -Wl adds a command to the linker from the driver
● You can ask for the linker to tell you where an object was

resolved from using the –y option.
● E.g. –Wl,-ydgemm_ (notice the ‘_’ at the end of the name)

Note: do not explicitly link “-lsci”. This will not be found from libsci
11+ and means a single core library for 10.x.

.//main.o: reference to dgemm_
/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):
definition of dgemm_

34

Threading for BLAS and LAPACK

● LibSci is compatible with OpenMP
● Control the number of threads to be used in your program using

OMP_NUM_THREADS, e.g. export OMP_NUM_THREADS=…
● Then run with aprun … –d $OMP_NUM_THREADS …

● What behavior you get from the library depends on your code
1. No threading in code

● The BLAS call will use OMP_NUM_THREADS threads

2. Threaded code, outside parallel regions
● The BLAS call will use OMP_NUM_THREADS threads

3. Threaded code, inside parallel regions
● The BLAS call will use a single thread

● Threaded LAPACK works exactly the same as threaded BLAS
● Anywhere LAPACK uses BLAS, those BLAS can be threaded.
● Some LAPACK routines are threaded at the higher level

35

Intel MKL

● The Intel Math Kernel Libraries (MKL) is an alternative to
LibSci
● Features tuned performance for Intel CPUs as well

● Linking quite complicated, but the Intel MKL Link Line Advisor
can tell you what to add to your link line
● http://software.intel.com/sites/products/mkl/

● Using MKL together with the Intel compilers (PrgEnv-intel) is
usually straightforward. Simply add –mkl to your compile and
linker options. You will get the following

Warning:
libraries from PE_LIBSCI will be ignored
because they conflict with -mkl.

http://software.intel.com/sites/products/mkl/

36

Performance Tuning and Scaling

37

Frequent Scenarios

● Frequent Scenarios

● General Remarks on Optimization

● Possible Bottlenecks and Overview of Remedies.

● Very short Review

● Hardware

● Job submission

38

Frequent Scenarios

● Code has been recently ported to the Cray XC system
● Previously running on a smaller cluster at the institute. Already using

MPI and/or OpenMP.
● Trying to run on larger amount of nodes through either strong or weak

scaling.

● Code was subjected to a significant change in numeric and
science.
● After notable amount of debugging the results are as expected.

● Code is running in production since a while.
● Researchers are happy with the results and can live with time to

solution.

● In all these scenarios the performance plays a minor role.
● Correctness of results and the ability to run large cases thanks to large

memory and storage has priority.

39

General Remarks on Optimization

● But performance does matter
● Solve the same problem in less time on same or more resources.

● Solve larger problem or more problems in approx. the same time on more
resources.

● It makes sense to plan some time for optimization besides development.

● Performance is usually associated to FLOPs/sec.
● But what if your code does many scattered memory references like in Graph

Analytics and not many FLOPs ?

● Chose the metric which suits your application (like time to solution or
updates/sec instead of FLOPs/sec) and keep that metric throughout the
optimization process.

● Modeling helps to understand the upper bound for performance.
● Models are simplified mathematical descriptions of a kernel using specific

values like amount of bytes used and FLOPs performed as well as system
values like memory bandwidth and CPU performance to estimate the overall
performance. (not covered in this tutorial.)

40

General Remarks on Optimization

● Start with low hanging fruits, i.e. avoid code modifications first of all

● Compiler optimizations

● Manual Rank Reordering

● Use optimized libraries

● Huge Pages

● Try Hyperthreads

● MPI variables and DMAP

● Experiment with different application placements on a node.

● Use performance tools

● Guided rank reordering.

● Automatic parallelization (OpenMP)

● Identify code regions which might benefit from a rewrite.

41

General Remarks on Optimization

● Use examples with different sizes for your experiments.
● small, medium, large, where node count differs by an order of

magnitude. Can be strong or weak scaling.
● Use small case to experiment with application placements and compiler flags

for instance. Load balancing issues might already appear.
● Keep an eye on communication time and load balancing for the large cases

especially for strong scaling.

● A possibility to create this set of examples could be to use the same
problem with different resolutions.
● Change work per node (strong scaling) or fix work per node (weak scaling).

Resolution could be the number of grid points in continuum mechanics or the
number of particles in molecular dynamics for instance.

● A good understanding of the workflow of your application
(Communication, Computation, IO, …) helps to better
interpret the profiles.

42

Bottlenecks and Remedies

Processor
(Computation)

Storage
(IO)

Network
(Communication)

- Rank Reordering

- MPI Optimization

- Hybridization

- Hugepages

- Compiler (Vectorization)

- Libraries (libsci, fftw, ...)

- Rank Placement on node.

- Change IO Strategy (striping, …)

- (Collective) Buffering

- Use Library (NetCDF, HDF5, MPI-IO)

Memory
(Bandwidth)

- Compiler (loop blocking)

- Rank placement on node.

- Hugepages

● Good: One bottleneck which can be easily improved without creating a new one.

● Bad: Several bottlenecks interacting with each other and changing over time.

● Need a profiler to identify bottleneck(s) and a model to estimate optimization

potential.

Application
Shared Shared

Exclusive Exclusive

43

IOBUF

 IOBUF is an I/O buffering library that can reduce the I/O wait time for

programs that read or write large files sequentially. IOBUF intercepts I/O

system calls such as read and open and adds a layer of buffering, thus

improving program performance by enabling asynchronous prefetching

and caching of file data.

 IOBUF can also gather runtime statistics and print a summary report of I/O

activity for each file. (verbose option)

44

How to use IOBUF

Four Steps to use IOBUF:

1. module load iobuf
2. Link application
3. export IOBUF_PARAMS='*'
4. Run application

● For a detailed output use:
● export IOBUF_PARAMS='*:verbose'

● Other options:
● count: changes number of buffers
● size: changes size of buffers

● Example:
● export IOBUF_PARAMS='*:verbose:size=10M:count=10'

● Many other options available.
● For details see man iobuf

45

IOBUF

● Application produced massive serial IO on Lustre

● A generic solution for serial IO is buffering.
● Default Linux buffering offers no control.

● Other solutions:
● Moving part of the IO to /tmp , which resides in the memory or is

local
● i.e. changing the source code
● With cce options for assign available

● Changing the IO pattern
● Rewriting the algorithm

● No source code available, only object files
Possible solutions by :

● Buffering of the Intel Compiler
● IOBUF

46

CRAY tools

Debugging and profiling at scale

47

Overview

● Debugging tools
● Stack Trace Analysis Tool (STAT)

● Abnormal Termination Processing (ATP)

● Profiling
● Perftools

● CrayPAT-lite

● CrayPAT

● Apprentice2

● Reveal

48

Overview

Debugging
Get your code up and

running correctly.

Profiling
Locate performance

bottlenecks.

Light weight
At most relinking. Get a

first picture of a

performance or problems

during execution.

ATP

STAT

CrayPAT-lite

(IOBUF)

(Profiler library)

In-depth
Recompile/Relink. Provides

detailed information at user

routine level.

lgdb, (ccdb)

Fast track

Allinea DDT

(Intel Inspector)

CrayPAT

Apprentice2

Reveal

(Intel Vtune)

● More information about Cray Tools on pubs.cray.com

49

The porting optimization Cycle

Port or update your application to the XC

Debug your application (get right results).
● Stack Trace Analysis Tool (STAT)
● Abnormal Termination Processing (ATP)
● Fast Track Debugger (FTD)
● Allinea DDT
● lgdb, (ccdb)

Profile your application for performance.
● Cray Performance Analysis Toolkit CrayPAT
● CrayPAT lite for faster profiling

50

Debugging in production and scale

● Even with the most rigorous testing, bugs may occur during
development or production runs.
● It can be very difficult to recreate a crash without additional information

● Even worse, for production codes need to be efficient so usually have
debugging disabled

● The failing application may have been using tens of or
hundreds of thousands of processes
● If a crash occurs one, many, or all of the processes might issue a signal.

● We don’t want the core files from every crashed process, they’re slow and
too big!

● We don’t want a backtrace from every process, they’re difficult to
comprehend and analyze.

51

Performance Analysis
with CrayPat

52

The Optimization Cycle

Profile

InspectDiagnose

Optimize

Major code
change

Process
Results

Debug
& Run

Loop while

time and

resources

permit

53

New Program Instrumentation Modules

● loaded low-impact module perftools-base
● Instrumentation modules available after

perftools-base is loaded:
● perftools-lite (sampling experiments)

● perftools-lite-events (tracing experimants)

● perftools-lite-loops (collect data for auto-parallelization / loop estimates in Reveal)

● perftools-lite-gpu (gpu kernel and data movemnets)

● perftools (fully adjustable CrayPAT, using pat_build and pat_report)

54

What Do the Instrumentation Modules Do?

perftools-lite
● Default CrayPat-lite profiling
● Load before building and running program to get a basic

performance profile sent to stdout
● Equivalent to loading perftools-lite module in earlier releases

perftools-lite-events
● CrayPat-lite event profile
● Load before building and running program to get more in-depth

performance data sent to stdout
● Equivalent to loading perftools-lite module and setting

CRAYPAT_LITE environment variable to event_profile in earlier
release

55

Perftools Instrumentation Modules

perftools-lite-loops
● CrayPat-lite loop work estimates

● Must be used with Cray compiler

● Load before building and running program to get loop work estimates
sent to stdout and to .ap2 file for use with Reveal

● Automates loop work experiment by modifying the compile and link
steps to include CCE’s –h profile_generate option and instrumenting
the program for tracing (pat_build -w).

● Remember that –h profile_generate reduces compiler optimization
levels. After experiment is complete, unload perftools-lite-loops to
prevent further program instrumentation.

56

Perftools Instrumentation Modules

perftools-lite-gpu
● CrayPat-lite GPU kernel and data movement information
● Load before building and running program to get GPU-specific

performance data sent to stdout
● Equivalent to loading the perftools-lite module and setting

CRAYPAT_LITE environment variable to gpu in earlier releases

perftools
● Full access to CrayPAT functionality
● Use pat_build to instrument, pat_report to process data and

collect reports
● (more details follow)

57

Components of Perftools

● CrayPAT-lite-XXX – automatic instrumentation and profiling

● CrayPAT – instrumentation and performance analysis tool,

including pat_build and pat_report (details follow)

● Cray Apprentice2 - A graphical analysis tool

that can be used to visualize and explore

the performance data captured during program execution.

● Reveal - A graphical source code analysis tool

that can be used to correlate performance analysis

data with annotated source code listings,

to identify key opportunities for optimization.

58

Components of Perftools (cont.)

● grid_order - Generates MPI rank order information that can be used

with the MPICH_RANK_REORDER environment variable to override the

default MPI rank placement scheme and specify a custom rank

placement. (For more information, see the intro_mpi(3) man page.)

● pat_help - Help system, which contains extensive usage information

and examples. This help system can be accessed by entering pat_help

at the command line.

● Documentation - The individual components of CrayPat are

documented in the following man pages (info on hardware counters will

follow):

● intro_craypat(1), pat_build(1), pat_report(1), pat_help(1), grid_order(1),

app2(1), reveal(1)

59

CrayPAT - lite

Examples of sampling, tracing and
loop profiling

60

Generate a Sampling Profile

• Provide basic tools and environment settings

• Set environment for sampling experiments

$> module load perftools-base

$> module load perftools-lite

• Builds already instrumented binary e.g. app.exe

$> make clean; make

• Running the instrumented binary creates a *.rpt and a *.ap2 file

• The report is additionally printed to stdout

$> aprun –n 24 app.exe >& job.out
$> less job.out

61

Sampling Report
$> make
...
INFO: A maximum of 51 functions from group 'io' will be traced.
INFO: A maximum of 208 functions from group 'mpi' will be traced.
INFO: A maximum of 20 functions from group 'realtime' will be traced.
INFO: A maximum of 56 functions from group 'syscall' will be traced.
INFO: creating the CrayPat-instrumented executable
'/a/certain/dir/cp2k.pdbg' (sample_profile) ...OK

> cat job.out
...
###
#
CrayPat-lite Performance Statistics
#
###

CrayPat/X: Version 6.3.0 Revision 14378 (xf 14041) 09/15/15 10:48:06
Experiment: lite lite/sample_profile
Number of PEs (MPI ranks): 48
Numbers of PEs per Node: 24 PEs on each of 2 Nodes
Numbers of Threads per PE: 1
Number of Cores per Socket: 12
Execution start time: Wed Oct 14 14:07:17 2015
System name and speed: mom11 2501 MHz

Avg Process Time: 5.14 secs
High Memory: 2,070 MBytes 43.13 MBytes per PE
MFLOPS: Not supported (see observation below)
I/O Read Rate: 4.803892 MBytes/sec
I/O Write Rate: 88.963763 MBytes/sec
Avg CPU Energy: 1,499 joules 749.50 joules per node
Avg CPU Power: 291.59 watts 145.80 watts per node

...
Table 1: Profile by Function Group and Function (top 8 functions shown)

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 263.4 | -- | -- |Total
|--
| 78.0% | 205.3 | -- | -- |MPI
||---
|| 62.4% | 164.4 | 115.6 | 42.2% |mpi_bcast
|| 10.4% | 27.4 | 186.6 | 89.1% |MPI_ALLREDUCE
|| 4.7% | 12.4 | 86.6 | 89.3% |MPI_IPROBE
||===
| 13.1% | 34.5 | -- | -- |USER
||---
|| 3.3% | 8.6 | 61.4 | 89.5% |__message_passing_MOD_mp_probe
|| 2.8% | 7.5 | 8.5 | 54.4% |__fist_nonbond_force_MOD_force_nonbond
|| 2.0% | 5.2 | 5.8 | 53.6% |__ewalds_MOD_ewald_evaluate
|| 1.1% | 2.9 | 3.1 | 52.5% |__splines_methods_MOD_potential_s
||===
| 8.2% | 21.5 | -- | -- |ETC
||---
|| 2.5% | 6.6 | 9.4 | 59.7% |__memmove_ssse3
|| 1.7% | 4.4 | 4.6 | 52.7% |__memset_sse2
|==..
...

Significant portion

of communication

General job information

Portions of samples

62

Sampling report

...
=================== Observations and suggestions ===================
Metric-Based Rank Order:

When the use of a shared resource like memory bandwidth is unbalanced
across nodes, total execution time may be reduced with a rank order
that improves the balance. The metric used here for resource usage
is: USER Samp

For each node, the metric values for the ranks on that node are
summed. The maximum and average value of those sums are shown below
for both the current rank order and a custom rank order that seeks
to reduce the maximum value.

A file named MPICH_RANK_ORDER.USER_Samp was generated
along with this report and contains usage instructions and the
Custom rank order from the following table.

Rank Node Reduction Maximum Average
Order Metric in Max Value Value

Imb. Value

Current 11.17% 9.310e+02 8.270e+02
Custom 2.59% 8.808% 8.490e+02 8.270e+02

========================= End Observations =========================
...

...
Table 2: File Input Stats by Filename

Read | Read | Read Rate | Reads | Bytes/ |File Name[max15]
Time | MBytes | MBytes/sec | | Call | PE=HIDE

0.113291 | 0.544238 | 4.803892 | 2,964.0 | 192.54 |Total
|--
| 0.057170 | 0.214447 | 3.751054 | 1,586.0 | 141.78 |topology_fist_WAT.psf
| 0.026845 | 0.138477 | 5.158328 | 844.0 | 172.04 |H2O_ice.inp
| 0.014117 | 0.000700 | 0.049586 | 3.0 | 244.67 |TMC_NPT.inp
| 0.007784 | 0.098442 | 12.646622 | 176.0 | 586.50 |/proc/meminfo
| 0.006957 | 0.078669 | 11.307646 | 25.0 | 3,299.60 |./ice_Ih_96.xyz
|==

Table 3: File Output Stats by Filename
Write | Write | Write Rate | Writes | Bytes/ |File Name[max15]
Time | MBytes | MBytes/sec | | Call | PE=HIDE

0.162883 | 14.490714 | 88.963763 | 5,203.0 | 2,920.36 |Total
|--
| 0.096137 | 13.861026 | 144.179480 | 3,805.0 | 3,819.80 |tmc_traj_T270.xyz
| 0.021800 | 0.064217 | 2.945740 | 18.0 | 3,740.89 |tmc_E_worker_1.out
| 0.016016 | 0.064296 | 4.014441 | 18.0 | 3,745.50 |tmc_E_worker_6.out
| 0.013735 | 0.155310 | 11.307340 | 761.0 | 214.00 |tmc_traj_T270.cell
| 0.004775 | 0.063504 | 13.300140 | 18.0 | 3,699.39 |tmc_E_worker_7.out
| 0.003025 | 0.026007 | 8.596676 | 505.0 | 54.00 |stdout
| 0.001983 | 0.064375 | 32.470347 | 19.0 | 3,552.74 |tmc_E_worker_3.out
| 0.001915 | 0.064375 | 33.624425 | 19.0 | 3,552.74 |tmc_E_worker_2.out
| 0.001905 | 0.063979 | 33.588895 | 18.0 | 3,727.06 |tmc_E_worker_4.out
| 0.001582 | 0.063504 | 40.142573 | 18.0 | 3,699.39 |tmc_E_worker_5.out
| 0.000011 | 0.000122 | 11.053907 | 4.0 | 32.00 |_UnknownFile_
|===

Input/Output analysis

Rank reorder suggestions

63

Generate a Tracing Profile

• Provide basic tools and environment settings

• Set environment for tracing experiments

$> module load perftools-base

$> module load perftools-lite-events

• Builds already instrumented binary e.g. app.exe

$> make clean; make

• Running the instrumented binary creates a *.rpt and a *.ap2 file

• The report is additionally printed to stdout

$> aprun –n 24 app.exe >& job.out
$> less job.out

64

Tracing report

● Comparable to sampling
experiment, but now the
function are really traced
from beginning to end

● Again observations and
suggestions are printed
● E.g. rank reordering
● And IO observations

> cat job.out
...
Table 1: Profile by Function Group and Function (top 4 functions shown)

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 3.075490 | -- | -- | 562,739.2 |Total
|--
| 74.2% | 2.282250 | -- | -- | 9,855.8 |MPI_SYNC
||---
|| 50.8% | 1.562708 | 1.551026 | 99.3% | 3,131.2 |mpi_bcast_(sync)
|| 12.9% | 0.396947 | 0.396920 | 100.0% | 1.0 |mpi_init_(sync)
|| 10.5% | 0.322147 | 0.293341 | 91.1% | 6,721.6 |mpi_allred_(sync)
||===
| 19.2% | 0.590622 | -- | -- | 2.0 |USER
||---
|| 19.2% | 0.590584 | 0.661898 | 54.0% | 1.0 |main
||===
| 5.4% | 0.166062 | -- | -- | 552,576.7 |MPI
||---
|| 4.1% | 0.126472 | 0.779788 | 87.9% | 541,104.1 |MPI_IPROBE
|==
...

Synchronization

Real time in functions

User functions Communication

65

Generate a loop Profile

• Provide basic tools and environment settings

• Set environment for tracing experiments with loop profiling

$> module load perftools-base

$> module load perftools-lite-loops

• Builds already instrumented binary e.g. app.exe

$> make clean; make

• Running the instrumented binary creates a *.rpt and a *.ap2 file

• The report is additionally printed to stdout

$> aprun –n 24 app.exe >& job.out
$> less job.out

66

Table 1: Inclusive and Exclusive Time in Loops (from -hprofile_generate)
Loop | Loop Incl | Time | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
Incl | Time | (Loop | Hit | Trips | Trips | Trips | PE=HIDE
Time% | | Adj.) | | Avg | Min | Max |
|---
| 93.0% | 19.232051 | 0.000849 | 2 | 26.5 | 3 | 50 |jacobi.LOOP.1.li.236
| 77.8% | 16.092021 | 0.001350 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.2.li.240
| 77.8% | 16.090671 | 0.110827 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.3.li.241
| 77.3% | 15.979844 | 15.979844 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.4.li.242
| 14.1% | 2.906115 | 0.001238 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.5.li.263
| 14.0% | 2.904878 | 0.688611 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.6.li.264
| 10.7% | 2.216267 | 2.216267 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.7.li.265
| 4.3% | 0.881573 | 0.000010 | 1 | 259.0 | 259 | 259 |initmt.LOOP.1.li.191
| 4.3% | 0.881563 | 0.000645 | 259 | 259.0 | 259 | 259 |initmt.LOOP.2.li.192
| 4.3% | 0.880918 | 0.880918 | 67081 | 515.0 | 515 | 515 |initmt.LOOP.3.li.193
| 2.7% | 0.560499 | 0.000055 | 1 | 257.0 | 257 | 257 |initmt.LOOP.4.li.210
| 2.7% | 0.560444 | 0.006603 | 257 | 257.0 | 257 | 257 |initmt.LOOP.5.li.211
| 2.7% | 0.553842 | 0.553842 | 66049 | 513.0 | 513 | 513 |initmt.LOOP.6.li.212

Subroutine

Loop timing report

Line number

Nested Loops

67

CrayPAT

fully adjustable profiling

68

Profiling with CrayPAT

• Makes the default version of CrayPAT available.

$> module load perftools-base

$> module load perftools

• If your application is already built with perftools loaded you do not have to rebuild when switching the experiment.

$> make clean; make

• pat_options are described below

• Creates instrumented binary app.exe+pat

$> pat_build <pat_options> app.exe

$> aprun –n 24 ./app.exe+pat

• Running the “+pat” binary creates a data file or directory

• pat_report reads that data file and prints lots of human-readable performance data. Creates an *.ap2 file.

$> pat_report –o myrep.txt himeno+pat+*

69

Some pat_build options

● More information:

● is given in man pat_build page

● functions in tracegroups are given in $CRAYPAT_ROOT/share/traces after loading the perftools module

● Only true function calls can be traced. Functions that are inlined by the compiler or that have

local scope in a compilation unit cannot be traced.

Option Description

Sampling profile

-u tracing of functions in source file owned by the user

-w Tracing is default experiment

-T <func> Specifies a function which will be traced

-t <file> All functions in the specified file will be traces

-g <group> Instrument all functions belonging to the specified trace function group, e.g. blas, io, mpi,

netcdf, syscall

70

Using pat_report

● pat_report perform data conversion

● Combines information from *.xf output (raw data files, optimized for writing to disk)

● Instrumented binary must still exist when data is converted!

● produce *.ap2 file (compressed performance file, optimized for visualization analysis)

● ap2 file is the input for subsequent pat_report calls and Reveal or Apprentice2

● *.xf files and instrumented binary files can be removed once ap2 file is generated.

● Generates a text report of performance results

● Many options for sorting, slicing or dicing data in the tables.

$> pat_report –O <table option> *.ap2

$> pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

● Several output formats {plot | rpt | ap2 | ap2‐xml | ap2‐txt | xf‐xml | xf‐txt |
html} available through –f option.

● filter the gathered data
$> pat_report –sfilter_input=‘condition’ …

● The ‘condition’ could be an expression involving 'pe' such as 'pe<1024' or 'pe%2==0'.

71

Combining Sampling and Tracing: APA

● Automatic Profiling Analysis:

● Target: large, long-running program (general a trace will inject
considerable overhead)

● Goal: limit tracing to those functions that consume the most time.
● Procedure: use a preliminary sampling experiment to determine and

instrument functions consuming the most time

$> module load perftools

• The APA is the default experiment. No option needed.

$> make clean; make
$> pat_build myapp.exe

• Applying pat_report to the *.xf generates an *.apa file in addition to the *.ap2 file.

$> aprun –n 24 ./myapp.exe+pat
$> pat_report –o myrep.txt myapp+pat+*

• The *.apa file contains instructions for the next instrumentation step.

• Modify it according to your needs.

$> vi *.apa

• Generates an instrumented binary *.exe+apa for tracing

$> pat_build –O *.apa

• Applying pat_report to the *.xf generates a new*.ap2 file.

$> aprun –n 24 ./myapp.exe+apa
$> pat_report –o myrep.txt myapp+apa+*

72

Loop Work Estimates

$> module load perftools-base

$> module load perftools

• Recompile your program for gathering loop statistics

• It is recommended to turn off OpenMP and OpenACC for the loop work estimates via –h noomp –h noacc

$> ftn -c -h profile_generate himeno.f90

$> ftn -o myapp.exe myapp.o

• Instrument the application for tracing (APA also possible)

$> pat_build –w[-u] myapp.exe

● Gives information on inclusive time spent in the loop nests and
typical trip count of the loops

● Please use only one thread (OMP_NUM_THREADS=1)
● Only available with CCE.

73

Apprentice2

Graphical representation
of

performance data

74

Cray Apprentice2

● Cray Apprentice2 is a post-processing performance data
visualization tool. Takes *.ap2 files as input.

● Main features are
● Call graph profile
● Communication statistics
● Time-line view for Communication

and IO.
● Activity view
● Pair-wise communication statistics
● Text reports

$> module load perftools-base

$> app2 my_program.ap2 &

●helps identify:
● Load imbalance

● Excessive communication
● Network contention
● Excessive serialization
● I/O Problems

75

Cray Apprentice2

76

Call Tree View

Function

List

Load balance overview:

Height Max time

Middle bar Average time

Lower bar Min time

Yellow represents imbalance

time

Zoom

Height exclusive time

Width inclusive time

DUH Button:

Provides hints for

performance

tuning

Filtered

nodes or

sub tree

77

Installing Apprentice2 on Laptop

From a Cray login node
$ module load perftools

Go to:

● $CRAYPAT_ROOT/share/desktop_installers/

● Download .dmg or .exe installer to laptop

● Double click on installer and follow directions to install

● Of course, can just run app2 from the login prompt instead

78

Reveal

Compiler Feedback and Variable scoping

79

Reveal

● Reveal is Cray’s next-generation integrated performance
analysis and code optimization tool.
● Source code navigation using whole program analysis (data provided

by the Cray compilation environment.)

● Coupling with performance data collected during execution by
CrayPAT. Understand which high level serial loops could benefit from
parallelism.

● Enhanced loop mark listing functionality.

● Dependency information for targeted loops

● Assist users optimize code by providing

variable scoping feedback and suggested

compile directives.

80

Input to Reveal

● You can omit the *.ap2 and inspect only compiler feedback.
● Note that the profile_generate option disables most automatic

compiler optimizations, which is why Cray recommends generating this
data separately from generating the program_library file.

$> module load perftools
$> ftn -O3 -hpl=my_program.pl -c
my_program_file1.f90
$> reveal my_program.pl my_program.ap2 &

● Recompile to generate program library
● Performance data from a separate loop timing trace experiment
● Launch Reveal

81

For more details :
https://pubs.cray.com

82

Questions?

83

Thank you

For any issues, contact pratyushsupport@tropmet.res.in

